|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Relations Satisfied by Point Vortex Equilibria with Strength Ratio $-2$
Kevin A. O'Neil Department of Mathematics, The University of Tulsa, 800 Tucker Dr., Tulsa OK 74104 USA
Аннотация:
Relations satisfied by the roots of the Loutsenko sequence of polynomials are derived. These roots are known to correspond to families of stationary and uniformly translating point vortices with two vortex strengths in ratio $-2$. The relations are analogous to those satisfied by the roots of the Adler–Moser polynomials, corresponding to equilibria with ratio $-1$. The proof uses an analysis of the differential equation that these polynomial pairs satisfy.
Ключевые слова:
point vortex, polynomial, equilibrium.
Поступила в редакцию: 30.05.2018 Принята в печать: 04.09.2018
Образец цитирования:
Kevin A. O'Neil, “Relations Satisfied by Point Vortex Equilibria with Strength Ratio $-2$”, Regul. Chaotic Dyn., 23:5 (2018), 580–582
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd346 https://www.mathnet.ru/rus/rcd/v23/i5/p580
|
Статистика просмотров: |
Страница аннотации: | 148 | Список литературы: | 33 |
|