|
Stationary Configurations of Point Vortices on a Cylinder
Dariya V. Safonova, Maria V. Demina, Nikolai A. Kudryashov Department of Applied Mathematics, National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
Аннотация:
In this paper we study the problem of constructing and classifying stationary equilibria of point vortices on a cylindrical surface. Introducing polynomials with roots at vortex positions, we derive an ordinary differential equation satisfied by the polynomials. We prove that this equation can be used to find any stationary configuration. The multivortex systems containing point vortices with circulation $\Gamma_1$ and $\Gamma_2$ ($\Gamma_2=-\mu\Gamma_1$) are considered in detail. All stationary configurations with the number of point vortices less than five are constructed. Several theorems on existence of polynomial solutions of the ordinary differential equation under consideration are proved. The values of the parameters of the mathematical model for which there exists an infinite number of nonequivalent vortex configurations on a cylindrical surface are found. New point vortex configurations are obtained.
Ключевые слова:
point vortices, stagnation points, stationary configuration, vortices on a cylinder, polynomial solution of differential equation.
Поступила в редакцию: 25.07.2018 Принята в печать: 20.08.2018
Образец цитирования:
Dariya V. Safonova, Maria V. Demina, Nikolai A. Kudryashov, “Stationary Configurations of Point Vortices on a Cylinder”, Regul. Chaotic Dyn., 23:5 (2018), 569–579
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd345 https://www.mathnet.ru/rus/rcd/v23/i5/p569
|
Статистика просмотров: |
Страница аннотации: | 173 | Список литературы: | 42 |
|