|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
A Nonholonomic Model of the Paul Trap
Alexey V. Borisovab, Alexander A. Kilinc, Ivan S. Mamaevd a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia
Аннотация:
In this paper, equations of motion for the problem of a ball rolling without slipping on a rotating hyperbolic paraboloid are obtained. Integrals of motions and an invariant measure are found. A detailed linear stability analysis of the ball’s rotations at the saddle point of the hyperbolic paraboloid is made. A three-dimensional Poincaré map generated by the phase flow of the problem is numerically investigated and the existence of a region of bounded trajectories in a neighborhood of the saddle point of the paraboloid is demonstrated. It is shown that a similar problem of a ball rolling on a rotating paraboloid, considered within the framework of the rubber model, can be reduced to a Hamiltonian system which includes the Brower problem as a particular case.
Ключевые слова:
Paul trap, stability, nonholonomic system, three-dimensional map, gyroscopic stabilization, noninertial coordinate system, Poincaré map, nonholonomic constraint, rolling without slipping, region of linear stability.
Поступила в редакцию: 12.03.2018 Принята в печать: 16.04.2018
Образец цитирования:
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Nonholonomic Model of the Paul Trap”, Regul. Chaotic Dyn., 23:3 (2018), 339–354
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd327 https://www.mathnet.ru/rus/rcd/v23/i3/p339
|
Статистика просмотров: |
Страница аннотации: | 231 | Список литературы: | 48 |
|