|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On a Convex Embedding of the Euler Problem of Two Fixed Centers
Seongchan Kim Mathematisches Institut, Universität Augsburg, Universitätsstrasse 14, Augsburg, 86159 Germany
Аннотация:
In this article, we study a convex embedding for the Euler problem of two fixed centers for energies below the critical energy level. We prove that the doubly-covered elliptic coordinates provide a 2-to-1 symplectic embedding such that the image of the bounded component near the lighter primary of the regularized Euler problem is convex for any energy below the critical Jacobi energy. This holds true if the two primaries have equal mass, but does not hold near the heavier body.
Ключевые слова:
convex embedding, global surface of section, Euler problem of two fixed centers.
Поступила в редакцию: 16.10.2017 Принята в печать: 31.01.2018
Образец цитирования:
Seongchan Kim, “On a Convex Embedding of the Euler Problem of Two Fixed Centers”, Regul. Chaotic Dyn., 23:3 (2018), 304–324
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd325 https://www.mathnet.ru/rus/rcd/v23/i3/p304
|
Статистика просмотров: |
Страница аннотации: | 138 | Список литературы: | 23 |
|