|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Complete Set of Invariants for a Bykov Attractor
Maria Carvalho, Alexandre P. Rodrigues Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
Аннотация:
In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.
Ключевые слова:
Bykov attractor, historic behavior, conjugacy, complete set of invariants.
Поступила в редакцию: 19.07.2017 Принята в печать: 28.01.2018
Образец цитирования:
Maria Carvalho, Alexandre P. Rodrigues, “Complete Set of Invariants for a Bykov Attractor”, Regul. Chaotic Dyn., 23:3 (2018), 227–247
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd320 https://www.mathnet.ru/rus/rcd/v23/i3/p227
|
|