|
Эта публикация цитируется в 21 научных статьях (всего в 21 статьях)
Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid
Sergey M. Ramodanova, Valentin A. Tenenevb, Dmitry V. Treschevcd a Institute of Computer Research, Udmurt State University,
426034, Russia, Izhevsk, Universitetskaya str., 1
b Izhevsk State Technical University,
Studencheskaya 7, Izhevsk, 426069 Russia
c Steklov Mathematical Institute, Russian Academy of Sciences,
Gubkina st. 8, Moscow, 119991, Russia
d M. V. Lomonosov Moscow State University,
Vorob’evy gory, Moscow, 119899, Russia
Аннотация:
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
Ключевые слова:
perfect fluid, self-propulsion, Flettner rotor.
Поступила в редакцию: 01.09.2011 Принята в печать: 24.09.2011
Образец цитирования:
Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev, “Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd267 https://www.mathnet.ru/rus/rcd/v17/i6/p547
|
|