|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball
Andrey V. Tsiganov St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Аннотация:
The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
Ключевые слова:
nonholonomic systems, Abel quadratures, arithmetic of divisors.
Поступила в редакцию: 10.04.2017 Принята в печать: 05.06.2017
Образец цитирования:
Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd260 https://www.mathnet.ru/rus/rcd/v22/i4/p353
|
|