|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)
Galliano Valent Laboratoire de Physique Mathématique de Provence,
Avenue Marius Jouveau 1, 13090 Aix-en-Provence, France
Аннотация:
We present a family of superintegrable (SI) systems which live on a Riemannian surface of revolution and which exhibit one linear integral and two integrals of any integer degree larger or equal to 2 in the momenta. When this degree is 2, one recovers a metric due to Koenigs. The local structure of these systems is under control of a $\it linear$ ordinary differential equation of order $n$ which is homogeneous for even integrals and weakly inhomogeneous for odd integrals. The form of the integrals is explicitly given in the so-called “simple” case (see Definition 2). Some globally defined examples are worked out which live either in $\mathbb{H}^2$ or in $\mathbb{R}^2$.
Ключевые слова:
superintegrable two-dimensional systems, differential systems, ordinary differential equations, analysis on manifolds.
Поступила в редакцию: 09.05.2017 Принята в печать: 27.06.2017
Образец цитирования:
Galliano Valent, “Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)”, Regul. Chaotic Dyn., 22:4 (2017), 319–352
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd259 https://www.mathnet.ru/rus/rcd/v22/i4/p319
|
|