|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane
Alexander A. Kilinab, Elena N. Pivovarovab a Institute of Mathematics and Mechanics of the Ural Branch of RAS,
ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia
b Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
Аннотация:
This paper is concerned with the dynamics of a top in the form of a truncated ball
as it moves without slipping and spinning on a horizontal plane about a vertical. Such a system
is described by differential equations with a discontinuous right-hand side. Equations describing
the system dynamics are obtained and a reduction to quadratures is performed. A bifurcation
analysis of the system is made and all possible types of the top’s motion depending on the
system parameters and initial conditions are defined. The system dynamics in absolute space
is examined. It is shown that, except for some special cases, the trajectories of motion are
bounded.
Ключевые слова:
integrable system, system with discontinuity, nonholonomic constraint, bifurcation diagram, absolute dynamics.
Поступила в редакцию: 03.04.2017 Принята в печать: 12.05.2017
Образец цитирования:
Alexander A. Kilin, Elena N. Pivovarova, “The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane”, Regul. Chaotic Dyn., 22:3 (2017), 298–317
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd258 https://www.mathnet.ru/rus/rcd/v22/i3/p298
|
Статистика просмотров: |
Страница аннотации: | 251 | Список литературы: | 63 |
|