|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Dynamical Systems on the Liouville Plane and the Related Strictly Contact Systems
Stavros Anastassiou Center of Research and Applications of Nonlinear Systems (CRANS)
University of Patras, Department of Mathematics,
GR-26500 Rion, Greece
Аннотация:
We study vector fields of the plane preserving the Liouville form. We present their local models up to the natural equivalence relation and describe local bifurcations of low codimension. To achieve that, a classification of univariate functions is given according to a relation stricter than contact equivalence. In addition, we discuss their relation with strictly contact vector fields in dimension three. Analogous results for diffeomorphisms are also given.
Ключевые слова:
systems preserving the Liouville form, strictly contact systems, classification, bifurcations.
Поступила в редакцию: 14.08.2016 Принята в печать: 22.11.2016
Образец цитирования:
Stavros Anastassiou, “Dynamical Systems on the Liouville Plane and the Related Strictly Contact Systems”, Regul. Chaotic Dyn., 21:7-8 (2016), 862–873
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd232 https://www.mathnet.ru/rus/rcd/v21/i7/p862
|
Статистика просмотров: |
Страница аннотации: | 147 | Список литературы: | 44 |
|