|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Nekhoroshev’s Approach to Hamiltonian Monodromy
Dmitrií A. Sadovskií Département de physique, Université du Littoral – Côte d’Opale,
59140, Dunkerque, France
Аннотация:
Using the hyperbolic circular billiard, introduced in [31] by Delos et al. as possibly the simplest system with Hamiltonian monodromy, we illustrate the method developed by N. N. Nekhoroshev and coauthors [48] to uncover this phenomenon. Nekhoroshev’s very original geometric approach reflects his profound insight into Hamiltonian monodromy as a general topological property of fibrations. We take advantage of the possibility of having closed form elementary function expressions for all quantities in our system in order to provide the most explicit and detailed explanation of Hamiltonian monodromy and its relation to similar phenomena in other domains.
Ключевые слова:
integrable fibration, Hamiltonian monodromy, first homology, $A_1$ singularity.
Поступила в редакцию: 16.08.2016 Принята в печать: 10.11.2016
Образец цитирования:
Dmitrií A. Sadovskií, “Nekhoroshev’s Approach to Hamiltonian Monodromy”, Regul. Chaotic Dyn., 21:6 (2016), 720–758
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd221 https://www.mathnet.ru/rus/rcd/v21/i6/p720
|
|