|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations
Dinh T. Trana, Peter H. van der Kampb, G. R. W. Quispelb a School of Mathematics and Statistics,
University of New South Wales, Sydney NSW 2052, Australia
b Department of Mathematics and Statistics,
La Trobe University, Bundoora VIC 3086, Australia
Аннотация:
In this paper, we present Poisson brackets of certain classes of mappings obtained as general periodic reductions of integrable lattice equations. The Poisson brackets are derived from a Lagrangian, using the so-called Ostrogradsky transformation. The $(q, -p)$ reductions are $(p+q)$-dimensional maps and explicit Poisson brackets for such reductions of the discrete KdV equation, the discrete Lotka–Volterra equation, and the discrete Liouville equation are included. Lax representations of these equations can be used to construct sufficiently many integrals for the reductions. As examples we show that the $(3, -2)$ reductions of the integrable partial difference equations are Liouville integrable in their own right.
Ключевые слова:
lattice equation, periodic reduction, Lagrangian, Poisson bracket.
Поступила в редакцию: 19.08.2016 Принята в печать: 03.11.2016
Образец цитирования:
Dinh T. Tran, Peter H. van der Kamp, G. R. W. Quispel, “Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations”, Regul. Chaotic Dyn., 21:6 (2016), 682–696
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd218 https://www.mathnet.ru/rus/rcd/v21/i6/p682
|
Статистика просмотров: |
Страница аннотации: | 160 | Список литературы: | 53 |
|