|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Noncommutative Integrable Systems on $b$-symplectic Manifolds
Anna Kiesenhofera, Eva Mirandaab a Department of Mathematics, Universitat Politècnica de Catalunya,
EPSEB, Avinguda del Doctor Marañón 44–50, Barcelona, Spain
b Barcelona Graduate School of Mathematics,
Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
Аннотация:
In this paper we study noncommutative integrable systems on $b$-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering noncommutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and prove an action-angle theorem for noncommutative integrable systems on a $b$-symplectic manifold in a neighborhood of a Liouville torus inside the critical set of the Poisson structure associated to the $b$-symplectic structure.
Ключевые слова:
Poisson manifolds, $b$-symplectic manifolds, noncommutative integrable systems, action-angle coordinates.
Поступила в редакцию: 08.06.2016 Принята в печать: 05.10.2016
Образец цитирования:
Anna Kiesenhofer, Eva Miranda, “Noncommutative Integrable Systems on $b$-symplectic Manifolds”, Regul. Chaotic Dyn., 21:6 (2016), 643–659
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd215 https://www.mathnet.ru/rus/rcd/v21/i6/p643
|
Статистика просмотров: |
Страница аннотации: | 324 | Список литературы: | 36 |
|