|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram
Pavel E. Ryabovabc, Andrej A. Oshemkovd, Sergei V. Sokolovb a Moscow Institute of Physics and Technology (State University)
Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
b Institute of Machines Science, Russian Academy of Sciences,
Maly Kharitonyevsky Per. 4, Moscow, 101990 Russia
c Financial University, Leningradsky prosp. 49, Moscow, 125993 Russia
d Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991 Russia
Аннотация:
The Adler – van Moerbeke integrable case of the Euler equations on the Lie algebra $so(4)$ is investigated. For the $L-A$ pair found by Reyman and Semenov-Tian-Shansky for this system, we explicitly present a spectral curve and construct the corresponding discriminant set. The singularities of the Adler – van Moerbeke integrable case and its bifurcation diagram are discussed. We explicitly describe singular points of rank 0, determine their types, and show that the momentum mapping takes them to self-intersection points of the real part of the discriminant set. In particular, the described structure of singularities of the Adler – van Moerbeke integrable case shows that it is topologically different from the other known integrable cases on $so(4)$.
Ключевые слова:
integrable Hamiltonian systems, spectral curve, bifurcation diagram.
Поступила в редакцию: 29.08.2016 Принята в печать: 14.09.2016
Образец цитирования:
Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov, “The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd211 https://www.mathnet.ru/rus/rcd/v21/i5/p581
|
Статистика просмотров: |
Страница аннотации: | 213 | Список литературы: | 47 |
|