|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory
Vsevolod L. Chernysheva, Anton A. Tolchennikovbcd, Andrei I. Shafarevichdceb a National Research University “Higher School of Economics”, ul. Myasnitskaya 20, Moscow, 101978 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia
e National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
Аннотация:
We review our recent results concerning the propagation of “quasi-particles” in hybrid spaces — topological spaces obtained from graphs via replacing their vertices by Riemannian manifolds. Although the problem is purely classical, it is initiated by the quantum one, namely, by the Cauchy problem for the time-dependent Schrödinger equation with localized initial data.We describe connections between the behavior of quasi-particles with the properties of the corresponding geodesic flows. We also describe connections of our problem with various problems in analytic number theory.
Ключевые слова:
hybrid spaces, propagation of quasi-particles, properties of geodesic flows, integral points in polyhedra, theory of abstract primes.
Поступила в редакцию: 26.08.2016 Принята в печать: 08.09.2016
Образец цитирования:
Vsevolod L. Chernyshev, Anton A. Tolchennikov, Andrei I. Shafarevich, “Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory”, Regul. Chaotic Dyn., 21:5 (2016), 531–537
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd202 https://www.mathnet.ru/rus/rcd/v21/i5/p531
|
Статистика просмотров: |
Страница аннотации: | 238 | Список литературы: | 56 |
|