|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Computing Hyperbolic Choreographies
Hadrien Montanelli Oxford University Mathematical Institute, Oxford, OX2 6GG, UK
Аннотация:
An algorithm is presented for numerical computation of choreographies in spaces of constant negative curvature in a hyperbolic cotangent potential, extending the ideas given in a companion paper [14] for computing choreographies in the plane in a Newtonian potential and on a sphere in a cotangent potential. Following an idea of Diacu, Pérez-Chavela and Reyes Victoria [9], we apply stereographic projection and study the problem in the Poincaré disk. Using approximation by trigonometric polynomials and optimization methods with exact gradient and exact Hessian matrix, we find new choreographies, hyperbolic analogues of the ones presented in [14]. The algorithm proceeds in two phases: first BFGS quasi-Newton iteration to get close to a solution, then Newton iteration for high accuracy.
Ключевые слова:
choreographies, curved $n$-body problem, trigonometric interpolation, quasi-Newton methods, Newton’s method.
Поступила в редакцию: 23.06.2016 Принята в печать: 18.08.2016
Образец цитирования:
Hadrien Montanelli, “Computing Hyperbolic Choreographies”, Regul. Chaotic Dyn., 21:5 (2016), 522–530
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd201 https://www.mathnet.ru/rus/rcd/v21/i5/p522
|
Статистика просмотров: |
Страница аннотации: | 191 | Список литературы: | 47 |
|