|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Global Structure and Geodesics for Koenigs Superintegrable Systems
Galliano Valent Laboratoire de Physique Mathématique de Provence,
19 bis Boulevard Emile Zola, F-13100 Aix-en-Provence, France
Аннотация:
We present a new derivation of the local structure of Koenigs metrics using a
framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a
potential preserving their superintegrability (SI) and most of them are shown to be globally
defined on either $\mathbb{R}^2$ or $\mathbb{H}^2$. Their geodesic flows are easily determined thanks to their quadratic
integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the
quantum level and for two metrics, for which all of the geodesics are closed, it is even possible
to compute the classical action variables and the point spectrum of the quantum Hamiltonian.
Ключевые слова:
superintegrable two-dimensional systems, analysis on manifolds, quantization.
Поступила в редакцию: 06.08.2016 Принята в печать: 18.08.2016
Образец цитирования:
Galliano Valent, “Global Structure and Geodesics for Koenigs Superintegrable Systems”, Regul. Chaotic Dyn., 21:5 (2016), 477–509
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd199 https://www.mathnet.ru/rus/rcd/v21/i5/p477
|
Статистика просмотров: |
Страница аннотации: | 137 | Список литературы: | 31 |
|