|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio
Amadeu Delshamsa, Marina Gonchenkob, Pere Gutiérreza a Dep. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya,
Av. Diagonal 647, 08028 Barcelona, Spain
b Technische Universität Berlin, Institut für Mathematik,
Straße des 17. Juni 136, D-10623 Berlin, Germany
Аннотация:
We study the exponentially small splitting of invariant manifolds of whiskered
(hyperbolic) tori with two fast frequencies in nearly integrable Hamiltonian
systems whose hyperbolic part is given by a pendulum. We consider a torus whose
frequency ratio is the silver number $\Omega=\sqrt{2}-1$. We show that the
Poincaré – Melnikov method can be applied to establish the existence of
4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic
estimates for the transversality of the splitting whose dependence on the
perturbation parameter $\varepsilon$ satisfies a periodicity property. We also
prove the continuation of the transversality of the homoclinic orbits for all
the sufficiently small values of $\varepsilon$, generalizing the results
previously known for the golden number.
Ключевые слова:
transverse homoclinic orbits, splitting of separatrices, Melnikov integrals, silver ratio.
Поступила в редакцию: 16.09.2014 Принята в печать: 29.09.2014
Образец цитирования:
Amadeu Delshams, Marina Gonchenko, Pere Gutiérrez, “Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio”, Regul. Chaotic Dyn., 19:6 (2014), 663–680
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd190 https://www.mathnet.ru/rus/rcd/v19/i6/p663
|
Статистика просмотров: |
Страница аннотации: | 186 | Список литературы: | 40 |
|