|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence
Alessandro Fortunati, Stephen Wiggins School of Mathematics, University of Bristol,
Bristol BS8 1TW, United Kingdom
Аннотация:
The aim of this paper is to prove a Kolmogorov type result for a nearly integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists in the possibility to choose an arbitrarily small decaying coefficient consistently with the perturbation size.
The proof, based on the Lie series formalism, is a generalization of a work by A. Giorgilli.
Ключевые слова:
Hamiltonian systems, Kolmogorov theorem, aperiodic time dependence.
Поступила в редакцию: 07.05.2014 Принята в печать: 05.09.2014
Образец цитирования:
Alessandro Fortunati, Stephen Wiggins, “Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence”, Regul. Chaotic Dyn., 19:5 (2014), 586–600
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd184 https://www.mathnet.ru/rus/rcd/v19/i5/p586
|
Статистика просмотров: |
Страница аннотации: | 215 | Список литературы: | 48 |
|