|
Energy Growth for a Nonlinear Oscillator Coupled to a Monochromatic Wave
Dmitry V. Turaevab, Christopher Warnerba, Sergey Zelikab a University of Surrey, Guildford, Surrey GU2 7XH, UK
b Imperial College, SW7 2 AZ London, UK
Аннотация:
A system consisting of a chaotic (billiard-like) oscillator coupled to a linear wave equation in the three-dimensional space is considered. It is shown that the chaotic behavior of the oscillator can cause the transfer of energy from a monochromatic wave to the oscillator, whose energy can grow without bound.
Ключевые слова:
delayed equation, invariant manifold, normal hyperbolicity, billiard.
Поступила в редакцию: 04.04.2014 Принята в печать: 17.05.2014
Образец цитирования:
Dmitry V. Turaev, Christopher Warner, Sergey Zelik, “Energy Growth for a Nonlinear Oscillator Coupled to a Monochromatic Wave”, Regul. Chaotic Dyn., 19:4 (2014), 513–522
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd178 https://www.mathnet.ru/rus/rcd/v19/i4/p513
|
Статистика просмотров: |
Страница аннотации: | 185 | Список литературы: | 42 |
|