|
Эта публикация цитируется в 61 научных статьях (всего в 61 статьях)
The Problem of Drift and Recurrence for the Rolling Chaplygin Ball
Alexey V. Borisovabc, Alexander A. Kilincab, Ivan S. Mamaevbac a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS,
Bardina str. 4, Moscow, 117334 Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990 Russia
Аннотация:
We investigate the motion of the point of contact (absolute dynamics) in the integrable problem of the Chaplygin ball rolling on a plane. Although the velocity of the point of contact is a given vector function of variables of the reduced system, it is impossible to apply standard methods of the theory of integrable Hamiltonian systems due to the absence of an appropriate conformally Hamiltonian representation for an unreduced system. For a complete analysis we apply the standard analytical approach, due to Bohl and Weyl, and develop topological methods of investigation. In this way we obtain conditions for boundedness and unboundedness of the trajectories of the contact point.
Ключевые слова:
nonholonomic constraint, absolute dynamics, bifurcation diagram, bifurcation complex, drift, resonance, invariant torus.
Поступила в редакцию: 19.09.2013 Принята в печать: 11.11.2013
Образец цитирования:
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd171 https://www.mathnet.ru/rus/rcd/v18/i6/p832
|
Статистика просмотров: |
Страница аннотации: | 341 | Список литературы: | 79 |
|