|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
KAM-tori Near an Analytic Elliptic Fixed Point
L. Hakan Eliassona, Bassam Fayada, Raphaël Krikorianb a Université Paris-Diderot, Institut de Mathématiques de Jussieu, UFR de Mathématiques, IMJ-PRG, Universite Paris Diderot, Batiment Sophie Germain 75205 Paris Cedex 13
b LPMA, Université Pierre et Marie Curie, 4 pl. Jussieu, 75252 Paris Cedex 05, France
Аннотация:
We study the accumulation of an elliptic fixed point of a real analytic Hamiltonian by quasi-periodic invariant tori.
We show that a fixed point with Diophantine frequency vector $\omega_0$ is always accumulated by invariant complex analytic KAM-tori. Indeed, the following alternative holds: If the Birkhoff normal form of the Hamiltonian at the invariant point satisfies a Rüssmann transversality condition, the fixed point is accumulated by real analytic KAM-tori which cover positive Lebesgue measure in the phase space (in this part it suffices to assume that $\omega_0$ has rationally independent coordinates). If the Birkhoff normal form is degenerate, there exists an analytic subvariety of complex dimension at least $d+1$ passing through $0$ that is foliated by complex analytic KAM-tori with frequency $\omega_0$.
This is an extension of previous results obtained in [1] to the case of an elliptic fixed point.
Ключевые слова:
Hamiltonian dynamics, elliptic fixed points, normal forms, KAM theory, invariant tori, Russmann’s condition, Herman’s conjecture, stability.
Поступила в редакцию: 02.12.2013 Принята в печать: 05.12.2013
Образец цитирования:
L. Hakan Eliasson, Bassam Fayad, Raphaël Krikorian, “KAM-tori Near an Analytic Elliptic Fixed Point”, Regul. Chaotic Dyn., 18:6 (2013), 801–831
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd170 https://www.mathnet.ru/rus/rcd/v18/i6/p801
|
Статистика просмотров: |
Страница аннотации: | 160 | Список литературы: | 50 |
|