|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Shilnikov Lemma for a Nondegenerate Critical Manifold of a Hamiltonian System
Sergey Bolotinab, Piero Negrinic a V. A. Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706-1325, USA
c Dipartimento di Matematica, Sapienza, Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
Аннотация:
Let $M$ be a normally hyperbolic symplectic critical manifold of a Hamiltonian system. Suppose $M$ consists of equilibria with real eigenvalues. We prove an analog of the Shilnikov lemma (strong version of the $\lambda$-lemma) describing the behavior of trajectories near $M$. Using this result, trajectories shadowing chains of homoclinic orbits to $M$ are represented as extremals of a discrete variational problem. Then the existence of shadowing periodic orbits is proved. This paper is motivated by applications to the Poincaré’s second species solutions of the $3$ body problem with $2$ masses small of order $\mu$. As $\mu \to 0$, double collisions of small bodies correspond to a symplectic critical manifold $M$ of the regularized Hamiltonian system. Thus our results imply the existence of Poincaré’s second species (nearly collision) periodic solutions for the unrestricted $3$ body problem.
Ключевые слова:
Hamiltonian system, symplectic map, generating function, heteroclinic orbit.
Поступила в редакцию: 31.07.2013 Принята в печать: 01.12.2013
Образец цитирования:
Sergey Bolotin, Piero Negrini, “Shilnikov Lemma for a Nondegenerate Critical Manifold of a Hamiltonian System”, Regul. Chaotic Dyn., 18:6 (2013), 774–800
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd169 https://www.mathnet.ru/rus/rcd/v18/i6/p774
|
Статистика просмотров: |
Страница аннотации: | 204 | Список литературы: | 46 |
|