|
Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)
Polynomial Entropies for Bott Integrable Hamiltonian Systems
Clémence Labrousseab, Jean-Pierre Marcoc a Université Paris-Dauphine, CEREMADE,
Place du Maréchal de Lattre de Tassigny 75775 Paris cedex 16, France
b École Normale Supérieure, DMA,
45 rue d’Ulm F-75230 Paris Cedex 05, France
c Université Paris 6, Analyse Algébrique, 4 Place Jussieu, 75252 Paris cedex 05, France
Аннотация:
In this paper, we study the entropy of a Hamiltonian flow in restriction
to an energy level where it admits a first integral which is nondegenerate
in the sense of Bott. It is easy to see that for such a flow, the
topological entropy vanishes. We focus on the polynomial and the
weak polynomial entropies ${\rm{h_{pol}}}$ and ${\rm{h_{pol}^*}}$. We show that, under
natural conditions on the critical levels of the Bott first integral and
on the Hamiltonian function $H$, ${\rm{h_{pol}^*}}\in \{0,1\}$ and ${\rm{h_{pol}}}\in \{0,1,2\}$.
To prove this result, our main tool is a semi-global desingularization of
the Hamiltonian system in the neighborhood of a polycycle.
Ключевые слова:
dynamical complexity, entropy, integrability, Bott integrable Hamiltonians.
Поступила в редакцию: 13.01.2014 Принята в печать: 27.04.2014
Образец цитирования:
Clémence Labrousse, Jean-Pierre Marco, “Polynomial Entropies for Bott Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 19:3 (2014), 374–414
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd161 https://www.mathnet.ru/rus/rcd/v19/i3/p374
|
Статистика просмотров: |
Страница аннотации: | 176 | Список литературы: | 43 |
|