Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2014, том 19, выпуск 1, страницы 100–115
DOI: https://doi.org/10.1134/S1560354714010079
(Mi rcd143)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

On the Variational Formulation of the Dynamics of Systems with Friction

Alexander P. Ivanov

Moscow Institute of Physics and Technology, Inststitutskii per. 9, Dolgoprudnyi, 141700 Russia
Список литературы:
Аннотация: We discuss the basic problem of the dynamics of mechanical systems with constraints, namely, the problem of finding accelerations as a function of the phase variables. It is shown that in the case of Coulomb friction, this problem is equivalent to solving a variational inequality. The general conditions for the existence and uniqueness of solutions are obtained. A number of examples are considered.
For systems with ideal constraints the problem under discussion was solved by Lagrange in his "Analytical Dynamics" (1788), which became a turning point in the mathematization of mechanics. In 1829, Gauss gave his principle, which allows one to obtain the solution as the minimum of a quadratic function of acceleration, called the constraint. In 1872 Jellett gave examples of non-uniqueness of solutions in systems with static friction, and in 1895 Painlevé showed that in the presence of friction, the absence of solutions is possible along with the nonuniqueness. Such situations were a serious obstacle to the development of theories, mathematical models and the practical use of systems with dry friction. An elegant, and unexpected, advance can be found in the work [1] by Pozharitskii, where the author extended the Gauss principle to the special case where the normal reaction can be determined from the dynamic equations regardless of the values of the coefficients of friction. However, for systems with Coulomb friction, where the normal reaction is a priori unknown, there are still only partial results on the existence and uniqueness of solutions [2–4].
The approach proposed here is based on a combination of the Gauss principle in the form of reactions with the representation of the nonlinear algebraic system of equations for the normal reactions in the form of a variational inequality. The theory of such inequalities [5] includes results on the existence and uniqueness, as well as the developed methods of solution.
Ключевые слова: principle of least constraint, dry friction, Painlevé paradoxes.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований No. 11- 01-00354_а
Министерство образования и науки Российской Федерации 14.A18.21.0374
This work was partially supported by the Russian Foundation for Basic Research (project No. 11- 01-00354) and by the Russian Ministry of Education and Science (agreement 14.A18.21.0374).
Поступила в редакцию: 06.08.2013
Принята в печать: 30.08.2013
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexander P. Ivanov, “On the Variational Formulation of the Dynamics of Systems with Friction”, Regul. Chaotic Dyn., 19:1 (2014), 100–115
Цитирование в формате AMSBIB
\RBibitem{Iva14}
\by Alexander~P.~Ivanov
\paper On the Variational Formulation of the Dynamics
of Systems with Friction
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 1
\pages 100--115
\mathnet{http://mi.mathnet.ru/rcd143}
\crossref{https://doi.org/10.1134/S1560354714010079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3181039}
\zmath{https://zbmath.org/?q=an:06506693}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333239100007}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd143
  • https://www.mathnet.ru/rus/rcd/v19/i1/p100
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:166
    Список литературы:49
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024