|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Second-degree Painlevé Equations and Their Contiguity Relations
Basil Grammaticosa, Alfred Ramanib, Partha Guhacd a IMNC, Université Paris VII & XI, CNRS,UMR 8165, Bât. 440, 91406 Orsay, France
b Centre de Physique Théorique, Ecole Polytechnique, CNRS,
91128 Palaiseau, France
c Satyendranath Nath Bose National Centre for Basic Sciences,
JD Block, Sector III, Kolkata — 700098, India
d Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures sur Yvette, France
Аннотация:
We study second-order, second-degree systems related to the Painlevé equations which possess one and two parameters. In every case we show that by introducing a quantity related to the canonical Hamiltonian variables it is possible to derive such a second-degree equation. We investigate also the contiguity relations of the solutions of these higher-degree equations. In most cases these relations have the form of correspondences, which would make them non-integrable in general. However, as we show, in our case these contiguity relations are indeed integrable mappings, with a single ambiguity in their evolution (due to the sign of a square root).
Ключевые слова:
Painlevé equations, contiguity relations, second-degree differential equations, Hamiltonian formalism.
Поступила в редакцию: 03.10.2013 Принята в печать: 04.12.2013
Образец цитирования:
Basil Grammaticos, Alfred Ramani, Partha Guha, “Second-degree Painlevé Equations and Their Contiguity Relations”, Regul. Chaotic Dyn., 19:1 (2014), 37–47
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd139 https://www.mathnet.ru/rus/rcd/v19/i1/p37
|
Статистика просмотров: |
Страница аннотации: | 144 | Список литературы: | 40 |
|