Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2013, том 18, выпуск 5, страницы 539–552
DOI: https://doi.org/10.1134/S1560354713050067
(Mi rcd138)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

On the Orbital Stability of Pendulum-like Vibrations of a Rigid Body Carrying a Rotor

Hamad M. Yehiaa, E. G. El-Hadidyb

a Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
b Department of Mathematics, Faculty of Science, Damietta University, Damietta, Egypt
Список литературы:
Аннотация: One of the most notable effects in mechanics is the stabilization of the unstable upper equilibrium position of a symmetric body fixed from one point on its axis of symmetry, either by giving the body a suitable angular velocity or by adding a suitably spinned rotor along its axis. This effect is widely used in technology and in space dynamics.
The aim of the present article is to explore the effect of the presence of a rotor on a simple periodic motion of the rigid body and its motion as a physical pendulum.
The equation in the variation for pendulum vibrations takes the form

$$\frac{d^2\gamma_3}{du^2}+\alpha\left[\alpha \nu^2+\frac{1}{2}+\rho^2 - (\alpha+1)\nu^2sn^2u+2\nu \rho \sqrt{\alpha}cnu \right]\gamma_3=0,$$

in which $\alpha$ depends on the moments of inertia, $\rho$ on the gyrostatic momentum of the rotor and $\nu$ (the modulus of the elliptic function) depends on the total energy of the motion. This equation, which reduces to Lame’s equation when $\rho=0$, has not been studied to any extent in the literature. The determination of the zones of stability and instability of plane motion reduces to finding conditions for the existence of primitive periodic solutions (with periods $4K(\nu)$, $8K(\nu)$) with those parameters. Complete analysis of primitive periodic solutions of this equation is performed analogously to that of Ince for Lame’s equation. Zones of stability and instability are determined analytically and illustrated in a graphical form by plotting surfaces separating them in the three-dimensional space of parameters. The problem is also solved numerically in certain regions of the parameter space, and results are compared to analytical ones.
Ключевые слова: stability, pendulum-like motions, planar motions, periodic differential equation, Hill’s equation, Lame’s equation.
Поступила в редакцию: 05.04.2013
Принята в печать: 09.09.2013
Реферативные базы данных:
Тип публикации: Статья
MSC: 70E50, 70H14, 70J25
Язык публикации: английский
Образец цитирования: Hamad M. Yehia, E. G. El-Hadidy, “On the Orbital Stability of Pendulum-like Vibrations of a Rigid Body Carrying a Rotor”, Regul. Chaotic Dyn., 18:5 (2013), 539–552
Цитирование в формате AMSBIB
\RBibitem{YehEl-13}
\by Hamad M. Yehia, E. G. El-Hadidy
\paper On the Orbital Stability of Pendulum-like Vibrations of a Rigid Body Carrying a Rotor
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 539--552
\mathnet{http://mi.mathnet.ru/rcd138}
\crossref{https://doi.org/10.1134/S1560354713050067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3117261}
\zmath{https://zbmath.org/?q=an:1286.70009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325810200006}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd138
  • https://www.mathnet.ru/rus/rcd/v18/i5/p539
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:167
    Список литературы:38
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024