|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
The Classical KAM Theorem for Hamiltonian Systems via Rational Approximations
Abed Bounemouraa, Stéphane Fischlerb a CNRS — CEREMADE, Université
Paris Dauphine
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
IMCCE, Observatoire de Paris
77 avenue Denfert-Rochereau, 75014 Paris, France
b Laboratoire de mathématiques d’Orsay,
Univ Paris Sud, 91405 Orsay Cedex, France
Аннотация:
In this paper, we give a new proof of the classical KAM theorem on the persistence of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno–Rüssmann condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof, which uses rational approximations instead of small divisors estimates, is an adaptation to the Hamiltonian setting of the method we introduced in [4] for perturbations of constant vector fields on the torus.
Ключевые слова:
perturbation of integrable Hamiltonian systems, KAM theory, Diophantine duality, periodic approximations.
Поступила в редакцию: 21.01.2014 Принята в печать: 11.03.2014
Образец цитирования:
Abed Bounemoura, Stéphane Fischler, “The Classical KAM Theorem for Hamiltonian Systems via Rational Approximations”, Regul. Chaotic Dyn., 19:2 (2014), 251–265
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd134 https://www.mathnet.ru/rus/rcd/v19/i2/p251
|
|