|
Phase Portraits of the Equation ¨x+ax˙x+bx3=0
Jaume Llibrea, Claudia Vallsb a Departament de Matemàtiques, Universitat Autònoma de Barcelona,
08193 Barcelona, Spain
b Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais, 1049–001 Lisboa, Portugal
Аннотация:
The second-order differential equation ¨x+ax˙x+bx3=0 with a,b∈R has been studied by several authors mainly due to its applications. Here, for the first time, we classify all its phase portraits according to its parameters a and b. This classification is done in the Poincaré disc in order to control the orbits that escape or come from infinity. We prove that there are exactly six topologically different phase portraits in the Poincaré disc of the first-order differential system associated to the second-order differential equation. Additionally, we show that this system is always integrable, providing explicitly its first integrals.
Ключевые слова:
second-order differential equation, Poincaré compactification, global phase portraits
Поступила в редакцию: 22.02.2023 Принята в печать: 01.08.2024
Образец цитирования:
Jaume Llibre, Claudia Valls, “Phase Portraits of the Equation ¨x+ax˙x+bx3=0”, Regul. Chaotic Dyn., 29:6 (2024), 825–837
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1285 https://www.mathnet.ru/rus/rcd/v29/i6/p825
|
Статистика просмотров: |
Страница аннотации: | 30 | Список литературы: | 8 |
|