|
Special Issue: Proceedings of RCD Conference 2023
Routes to Chaos in a Three-Dimensional Cancer Model
Efrosiniia Karatetskaiaa, Vladislav Koryakina, Konstantin Soldatkina, Alexey Kazakovba a National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
b Lobachevsky University of Nizhny Novgorod,
pr. Gagarina 23, 603022 Nizhny Novgorod, Russia
Аннотация:
We provide a detailed bifurcation analysis in a three-dimensional system describing
interaction between tumor cells, healthy tissue cells, and cells of the immune system. As is
well known from previous studies, the most interesting dynamical regimes in this model are
associated with the spiral chaos arising due to the Shilnikov homoclinic loop to a saddle-focus
equilibrium [1–3]. We explain how this equilibrium appears and how it gives rise to Shilnikov
attractors. The main part of this work is devoted to the study of codimension-two bifurcations
which, as we show, are the organizing centers in the system. In particular, we describe bifurcation
unfoldings for an equilibrium state when: (1) it has a pair of zero eigenvalues (Bogdanov – Takens
bifurcation) and (2) zero and a pair of purely imaginary eigenvalues (zero-Hopf bifurcation). It
is shown how these bifurcations are related to the emergence of the observed chaotic attractors.
Ключевые слова:
spiral chaos, Shilnikov attractor, homoclinic orbit, Lyapunov exponent
Поступила в редакцию: 24.07.2024 Принята в печать: 12.09.2024
Образец цитирования:
Efrosiniia Karatetskaia, Vladislav Koryakin, Konstantin Soldatkin, Alexey Kazakov, “Routes to Chaos in a Three-Dimensional Cancer Model”, Regul. Chaotic Dyn., 29:5 (2024), 777–793
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1281 https://www.mathnet.ru/rus/rcd/v29/i5/p777
|
Статистика просмотров: |
Страница аннотации: | 32 | Список литературы: | 16 |
|