|
On the Interplay Between Vortices and Harmonic Flows: Hodge Decomposition of Euler’s Equations in 2d
Clodoaldo Grotta-Ragazzoa, Björn Gustafssonb, Jair Koillerc a Instituto de Matematica e Estatistica, Universidade de São Paulo,
Cidade Universitária, R. do Matão 1010, 05508-090 São Paulo, Brazil
b Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
c Instituto de Física, Universidade do Estado do Rio de Janeiro,
R. São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, Brazil
Аннотация:
Let $\Sigma$ be a compact manifold without boundary whose first homology is nontrivial. The Hodge decomposition of the incompressible Euler equation in terms of 1-forms yields a coupled PDE-ODE system. The $L^2$-orthogonal components are a “pure” vorticity flow and a potential flow (harmonic, with the dimension of the homology). In this paper we focus on $N$ point vortices on a compact Riemann surface without boundary of genus $g$, with a metric chosen in the conformal class. The phase space has finite dimension $2N+ 2g$. We compute a surface of section for the motion of a single vortex ($N=1$) on a torus ($g=1$) with a nonflat metric that shows typical features of nonintegrable 2 degrees of freedom Hamiltonians. In contradistinction, for flat tori the harmonic part is constant. Next, we turn to hyperbolic surfaces ($ g \geqslant 2$) having constant curvature $-1$, with discrete symmetries. Fixed points of involutions yield vortex crystals in the Poincaré disk. Finally, we consider multiply connected planar domains. The image method due to Green and Thomson is
viewed in the Schottky double. The Kirchhoff – Routh Hamiltonian
given in C. C. Lin's celebrated theorem is recovered by
Marsden – Weinstein reduction from $2N+2g$ to $2N$.
The relation between the electrostatic Green function and the
hydrodynamic Green function is clarified.
A number of questions are suggested.
Ключевые слова:
vortex motion, Riemann surfaces, Hodge decomposition
Поступила в редакцию: 10.11.2022 Принята в печать: 13.02.2024
Образец цитирования:
Clodoaldo Grotta-Ragazzo, Björn Gustafsson, Jair Koiller, “On the Interplay Between Vortices and Harmonic Flows: Hodge Decomposition of Euler’s Equations in 2d”, Regul. Chaotic Dyn., 29:2 (2024), 241–303
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1256 https://www.mathnet.ru/rus/rcd/v29/i2/p241
|
Статистика просмотров: |
Страница аннотации: | 38 | Список литературы: | 17 |
|