Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2024, том 29, выпуск 2, страницы 241–303
DOI: https://doi.org/10.1134/S1560354724020011
(Mi rcd1256)
 

On the Interplay Between Vortices and Harmonic Flows: Hodge Decomposition of Euler’s Equations in 2d

Clodoaldo Grotta-Ragazzoa, Björn Gustafssonb, Jair Koillerc

a Instituto de Matematica e Estatistica, Universidade de São Paulo, Cidade Universitária, R. do Matão 1010, 05508-090 São Paulo, Brazil
b Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
c Instituto de Física, Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, Brazil
Список литературы:
Аннотация: Let $\Sigma$ be a compact manifold without boundary whose first homology is nontrivial. The Hodge decomposition of the incompressible Euler equation in terms of 1-forms yields a coupled PDE-ODE system. The $L^2$-orthogonal components are a “pure” vorticity flow and a potential flow (harmonic, with the dimension of the homology). In this paper we focus on $N$ point vortices on a compact Riemann surface without boundary of genus $g$, with a metric chosen in the conformal class. The phase space has finite dimension $2N+ 2g$. We compute a surface of section for the motion of a single vortex ($N=1$) on a torus ($g=1$) with a nonflat metric that shows typical features of nonintegrable 2 degrees of freedom Hamiltonians. In contradistinction, for flat tori the harmonic part is constant. Next, we turn to hyperbolic surfaces ($ g \geqslant 2$) having constant curvature $-1$, with discrete symmetries. Fixed points of involutions yield vortex crystals in the Poincaré disk. Finally, we consider multiply connected planar domains. The image method due to Green and Thomson is viewed in the Schottky double. The Kirchhoff – Routh Hamiltonian given in C. C. Lin's celebrated theorem is recovered by Marsden – Weinstein reduction from $2N+2g$ to $2N$. The relation between the electrostatic Green function and the hydrodynamic Green function is clarified. A number of questions are suggested.
Ключевые слова: vortex motion, Riemann surfaces, Hodge decomposition
Поступила в редакцию: 10.11.2022
Принята в печать: 13.02.2024
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Clodoaldo Grotta-Ragazzo, Björn Gustafsson, Jair Koiller, “On the Interplay Between Vortices and Harmonic Flows: Hodge Decomposition of Euler’s Equations in 2d”, Regul. Chaotic Dyn., 29:2 (2024), 241–303
Цитирование в формате AMSBIB
\RBibitem{GroGusKoi24}
\by Clodoaldo Grotta-Ragazzo, Bj\"orn Gustafsson, Jair Koiller
\paper On the Interplay Between Vortices and Harmonic Flows: Hodge Decomposition of Euler’s Equations in 2d
\jour Regul. Chaotic Dyn.
\yr 2024
\vol 29
\issue 2
\pages 241--303
\mathnet{http://mi.mathnet.ru/rcd1256}
\crossref{https://doi.org/10.1134/S1560354724020011}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1256
  • https://www.mathnet.ru/rus/rcd/v29/i2/p241
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:38
    Список литературы:17
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024