|
Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev
Chaos in Coupled Heteroclinic Cycles Between Weak Chimeras
Artyom E. Emelin, Evgeny A. Grines, Tatiana A. Levanova Lobachevsky University,
pr. Gagarin 23, 603022 Nizhny Novgorod, Russia
Аннотация:
Heteroclinic cycles are widely used in neuroscience in order to mathematically
describe different mechanisms of functioning of the brain and nervous system. Heteroclinic
cycles and interactions between them can be a source of different types of nontrivial dynamics.
For instance, as it was shown earlier, chaotic dynamics can appear as a result of interaction
via diffusive couplings between two stable heteroclinic cycles between saddle equilibria. We go
beyond these findings by considering two coupled stable heteroclinic cycles rotating in opposite
directions between weak chimeras. Such an ensemble can be mathematically described by a
system of six phase equations. Using two-parameter bifurcation analysis, we investigate the
scenarios of emergence and destruction of chaotic dynamics in the system under study.
Ключевые слова:
chaos, heteroclinic cycle, weak chimera
Поступила в редакцию: 31.08.2023 Принята в печать: 12.01.2024
Образец цитирования:
Artyom E. Emelin, Evgeny A. Grines, Tatiana A. Levanova
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1254
|
Статистика просмотров: |
Страница аннотации: | 30 | Список литературы: | 19 |
|