Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2024, том 29, выпуск 1, статья опубликована в англоязычной версии журнала
DOI: https://doi.org/10.1134/S1560354724010088
(Mi rcd1249)
 

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

Dynamics of a Pendulum in a Rarefied Flow

Alexey Davydovab, Alexander Plakhovcd

a Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
b National University of Science and Technology MISIS, pr. Leninskiy, 19049 Moscow, Russia
c Center for R\&D in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
d Institute for Information Transmission Problems, per. Bolshoy Karetny 19, 127994 Moscow, Russia
(1)
Список литературы:
Аннотация: We consider the dynamics of a rod on the plane in a flow of non-interacting point particles moving at a fixed speed. When colliding with the rod, the particles are reflected elastically and then leave the plane of motion of the rod and do not interact with it. A thin unbending weightless “knitting needle” is fastened to the massive rod. The needle is attached to an anchor point and can rotate freely about it. The particles do not interact with the needle. The equations of dynamics are obtained, which are piecewise analytic: the phase space is divided into four regions where the analytic formulas are different. There are two fixed points of the system, corresponding to the position of the rod parallel to the flow velocity, with the anchor point at the front and the back. It is found that the former point is topologically a stable focus, and the latter is topologically a saddle. A qualitative description of the phase portrait of the system is obtained.
Ключевые слова: Newtonian aerodynamics, pendulum, elastic impact
Финансовая поддержка
The work of AD was supported by the MSU Program of Development, Project No 23-SCH5-25. The work of AP was supported by the Center for R&D in Mathematics and Applications, refs. UIDB/04106/2020 and UIDP/04106/2020, and by CoSysM3, ref. 2022.03091.PTDC, through FCT.
Поступила в редакцию: 22.10.2023
Принята в печать: 11.01.2024
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexey Davydov, Alexander Plakhov
Цитирование в формате AMSBIB
\RBibitem{DavPla24}
\by Alexey Davydov, Alexander Plakhov
\mathnet{http://mi.mathnet.ru/rcd1249}
\crossref{https://doi.org/10.1134/S1560354724010088}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1249
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:58
    Список литературы:18
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024