|
Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev
Quasi-Periodicity at Transition from Spiking to Bursting in the Pernarowski Model of Pancreatic Beta Cells
Haniyeh Fallaha, Andrey L. Shilnikovb a Department of Mathematics and Computer Science, Amirkabir University of Technology,
15875-4413 Tehran, Iran
b Department of Mathematics and Statistics, Georgia State University,
100 Piedmont Ave, 30303 Atlanta, USA
Аннотация:
This paper studies quasi-periodicity phenomena appearing at the transition from
spiking to bursting activities in the Pernarowski model of pancreatic beta cells. Continuing
the parameter, we show that the torus bifurcation is responsible for the transition between
spiking and bursting. Our investigation involves different torus bifurcations, such as supercritical
torus bifurcation, saddle torus canard, resonant torus, self-similar torus fractals, and torus
destruction. These bifurcations give rise to complex or multistable dynamics. Despite being
a dissipative system, the model still exhibits KAM tori, as we have illustrated. We provide
two scenarios for the onset of resonant tori using the Poincaré return map, where global
bifurcations happen because of the saddle-node or inverse period-doubling bifurcations. The
blue-sky catastrophe takes place at the transition route from bursting to spiking.
Ключевые слова:
Pernarowski model, KAM tori, torus break-down, blue-sky catastrophe, global bifurcations, fractals
Поступила в редакцию: 05.10.2023 Принята в печать: 15.12.2023
Образец цитирования:
Haniyeh Fallah, Andrey L. Shilnikov
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1247
|
Статистика просмотров: |
Страница аннотации: | 27 | Список литературы: | 19 |
|