|
Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev
On the Regularity of Invariant Foliations
Dmitry Turaev Imperial College,
SW7 2AZ London, UK
Аннотация:
We show that the stable invariant foliation of codimension 1 near a zero-dimensional hyperbolic set of a $C^{\beta}$ map with $\beta>1$ is $C^{1+\varepsilon}$ with some $\varepsilon>0$. The result is applied to the restriction of higher regularity
maps to normally hyperbolic manifolds. An application to the theory of the Newhouse phenomenon is discussed.
Ключевые слова:
homoclinic tangency, thickness of Cantor set, invariant manifold
Поступила в редакцию: 20.12.2023 Принята в печать: 09.12.2024
Образец цитирования:
Dmitry Turaev
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1242
|
Статистика просмотров: |
Страница аннотации: | 40 | Список литературы: | 24 |
|