Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2023, том 28, выпуск 3, страницы 251–264
DOI: https://doi.org/10.1134/S1560354723030012
(Mi rcd1204)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Formal Stability, Stability for Most Initial Conditions and Diffusion in Analytic Systems of Differential Equations

Valery V. Kozlov

Steklov Mathematical Institute of Russian Academy of Science, ul. Gubkina 8, 119991 Moscow, Russia
Список литературы:
Аннотация: An example of an analytic system of differential equations in $\mathbb{R}^6$ with an equilibrium formally stable and stable for most initial conditions is presented. By means of a divergent formal transformation this system is reduced to a Hamiltonian system with three degrees of freedom. Almost all its phase space is foliated by three-dimensional invariant tori carrying quasi-periodic trajectories. These tori do not fill all phase space. Though the “gap” between these tori has zero measure, this set is everywhere dense in $\mathbb{R}^6$ and unbounded phase trajectories are dense in this gap. In particular, the formally stable equilibrium is Lyapunov unstable. This behavior of phase trajectories is quite consistent with the diffusion in nearly integrable systems. The proofs are based on the Poincaré–Dulac theorem, the theory of almost periodic functions, and on some facts from the theory of inhomogeneous Diophantine approximations. Some open problems related to the example are presented.
Ключевые слова: analytic systems, formal stability, stability for most initial conditions, Lyapunov instability, diffusion, normal forms, almost periodic functions, inhomogeneous Diophantine approximations, Hamiltonian systems, Poisson stability.
Финансовая поддержка Номер гранта
Российский научный фонд 19-71-30012
This work was supported by the Russian Science Foundation under Grant No. 19-71-30012.
Поступила в редакцию: 08.03.2023
Принята в печать: 19.04.2023
Реферативные базы данных:
Тип публикации: Статья
MSC: 34D20, 37C75
Язык публикации: английский
Образец цитирования: Valery V. Kozlov, “Formal Stability, Stability for Most Initial Conditions and Diffusion in Analytic Systems of Differential Equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264
Цитирование в формате AMSBIB
\RBibitem{Koz23}
\by Valery V. Kozlov
\paper Formal Stability, Stability for Most Initial Conditions and Diffusion in Analytic Systems of Differential Equations
\jour Regul. Chaotic Dyn.
\yr 2023
\vol 28
\issue 3
\pages 251--264
\mathnet{http://mi.mathnet.ru/rcd1204}
\crossref{https://doi.org/10.1134/S1560354723030012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4597754}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001000530500001}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1204
  • https://www.mathnet.ru/rus/rcd/v28/i3/p251
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:150
    Список литературы:48
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024