|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
On a Class of Integrable Systems with a Quartic First Integral
Galliano Valentabc a Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS UMR 7589, 2 Place Jussieu, 75251 Paris Cedex 05, France
b Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France
c Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France
Аннотация:
We generalize, to some extent, the results on integrable geodesic flows on two dimensional manifolds with a quartic first integral in the framework laid down by Selivanova and Hadeler. The local structure is first determined by a direct integration of the differential system which expresses the conservation of the quartic observable and is seen to involve a finite number of parameters. The global structure is studied in some detail and leads to a class of models on the manifolds $\mathbb{S}^2$, $\mathbb{H}^2$ or $\mathbb{R}^2$. As special cases we recover Kovalevskaya’s integrable system and a generalization of it due to Goryachev.
Ключевые слова:
integrable Hamiltonian systems, quartic polynomial integral, manifolds for Riemannian metrics.
Поступила в редакцию: 22.04.2013 Принята в печать: 28.06.2013
Образец цитирования:
Galliano Valent, “On a Class of Integrable Systems with a Quartic First Integral”, Regul. Chaotic Dyn., 18:4 (2013), 394–424
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd120 https://www.mathnet.ru/rus/rcd/v18/i4/p394
|
Статистика просмотров: |
Страница аннотации: | 127 | Список литературы: | 33 |
|