|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Spiral-Like Extremals near a Singular Surface
in a Rocket Control Problem
Mariya I. Ronzhina, Larisa A. Manita Steklov Mathematical Institute, Russian Academy of Sciences,
ul. Gubkina 8, 119991 Moscow, Russia
Аннотация:
In this paper, we consider the minimum time problem for a space rocket whose
dynamics is given by a control-affine system with drift. The admissible control set is a disc. We
study extremals in the neighbourhood of singular points of the second order. Our approach is
based on applying the method of a descending system of Poisson brackets and the Zelikin –
Borisov method for resolution of singularities to the Hamiltonian system of Pontryagin’s
maximum principle. We show that in the neighbourhood of any singular point there is a family
of spiral-like solutions of the Hamiltonian system that enter the singular point in a finite time,
while the control performs an infinite number of rotations around the circle.
Ключевые слова:
Hamiltonian system of Pontryagin’s maximum principle, singular extremal, control-affine system with drift, descending system of Poisson brackets, resolution of singularity, blow-up, coupled attitude orbit problem.
Поступила в редакцию: 05.08.2022 Принята в печать: 01.02.2023
Образец цитирования:
Mariya I. Ronzhina, Larisa A. Manita, “Spiral-Like Extremals near a Singular Surface
in a Rocket Control Problem”, Regul. Chaotic Dyn., 28:2 (2023), 148–161
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1199 https://www.mathnet.ru/rus/rcd/v28/i2/p148
|
Статистика просмотров: |
Страница аннотации: | 73 | Список литературы: | 26 |
|