Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2013, том 18, выпуск 4, страницы 380–393
DOI: https://doi.org/10.1134/S1560354713040059
(Mi rcd119)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Stability of Underwater Periodic Locomotion

Fangxu Jing, Eva Kanso

Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA
Список литературы:
Аннотация: Most aquatic vertebrates swim by lateral flapping of their bodies and caudal fins. While much effort has been devoted to understanding the flapping kinematics and its influence on the swimming efficiency, little is known about the stability (or lack of) of periodic swimming. It is believed that stability limits maneuverability and body designs/flapping motions that are adapted for stable swimming are not suitable for high maneuverability and vice versa. In this paper, we consider a simplified model of a planar elliptic body undergoing prescribed periodic heaving and pitching in potential flow. We show that periodic locomotion can be achieved due to the resulting hydrodynamic forces, and its value depends on several parameters including the aspect ratio of the body, the amplitudes and phases of the prescribed flapping.We obtain closedform solutions for the locomotion and efficiency for small flapping amplitudes, and numerical results for finite flapping amplitudes. This efficiency analysis results in optimal parameter values that are in agreement with values reported for some carangiform fish. We then study the stability of the (finite amplitude flapping) periodic locomotion using Floquet theory. We find that stability depends nonlinearly on all parameters. Interesting trends of switching between stable and unstable motions emerge and evolve as we continuously vary the parameter values. This suggests that, for live organisms that control their flapping motion, maneuverability and stability need not be thought of as disjoint properties, rather the organism may manipulate its motion in favor of one or the other depending on the task at hand.
Ключевые слова: biolocomotion, solid-fluid interactions, efficiency, motion stability.
Финансовая поддержка Номер гранта
National Science Foundation CMMI 06-44925
CCF 08-11480
The work of EK is partially supported by the National Science Foundation through the CAREER award CMMI 06-44925 and the grant CCF 08-11480.
Поступила в редакцию: 10.04.2013
Принята в печать: 20.06.2013
Реферативные базы данных:
Тип публикации: Статья
MSC: 76Z10, 37N99
Язык публикации: английский
Образец цитирования: Fangxu Jing, Eva Kanso, “Stability of Underwater Periodic Locomotion”, Regul. Chaotic Dyn., 18:4 (2013), 380–393
Цитирование в формате AMSBIB
\RBibitem{JinKan13}
\by Fangxu Jing, Eva Kanso
\paper Stability of Underwater Periodic Locomotion
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 4
\pages 380--393
\mathnet{http://mi.mathnet.ru/rcd119}
\crossref{https://doi.org/10.1134/S1560354713040059}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3090208}
\zmath{https://zbmath.org/?q=an:1274.76388}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322878100005}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd119
  • https://www.mathnet.ru/rus/rcd/v18/i4/p380
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:114
    Список литературы:35
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024