Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2022, том 27, выпуск 6, страницы 697–712
DOI: https://doi.org/10.1134/S1560354722060077
(Mi rcd1188)
 

Alexey Borisov Memorial Volume

Synchronization and Bistability of Two Uniaxial Spin-Transfer Oscillators with Field Coupling

Pavel V. Kuptsov

Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch ul. Zelenaya 38, 410019 Saratov, Russia
Список литературы:
Аннотация: A spin-transfer oscillator is a nanoscale device demonstrating self-sustained precession of its magnetization vector whose length is preserved. Thus, the phase space of this dynamical system is limited by a three-dimensional sphere. A generic oscillator is described by the Landau – Lifshitz – Gilbert – Slonczewski equation, and we consider a particular case of uniaxial symmetry when the equation yet experimentally relevant is reduced to a dramatically simple form. The established regime of a single oscillator is a purely sinusoidal limit cycle coinciding with a circle of sphere latitude (assuming that points where the symmetry axis passes through the sphere are the poles). On the limit cycle the governing equations become linear in two oscillating magnetization vector components orthogonal to the axis, while the third one along the axis remains constant. In this paper we analyze how this effective linearity manifests itself when two such oscillators are mutually coupled via their magnetic fields. Using the phase approximation approach, we reveal that the system can exhibit bistability between synchronized and nonsynchronized oscillations. For the synchronized one the Adler equation is derived, and the estimates for the boundaries of the bistability area are obtained. The two- dimensional slices of the basins of attraction of the two coexisting solutions are considered. They are found to be embedded in each other, forming a series of parallel stripes. Charts of regimes and charts of Lyapunov exponents are computed numerically. Due to the effective linearity the overall structure of the charts is very simple; no higher-order synchronization tongues except the main one are observed.
Ключевые слова: uniaxial spin-transfer oscillators, mutual synchronization, bistability.
Финансовая поддержка Номер гранта
Российский научный фонд 21-12-00121
This work was supported by the Russian Science Foundation, project 21-12-00121, https://rscf.ru/en/project/21-12-00121/.
Поступила в редакцию: 21.07.2022
Принята в печать: 09.11.2022
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Pavel V. Kuptsov, “Synchronization and Bistability of Two Uniaxial Spin-Transfer Oscillators with Field Coupling”, Regul. Chaotic Dyn., 27:6 (2022), 697–712
Цитирование в формате AMSBIB
\RBibitem{Kup22}
\by Pavel V. Kuptsov
\paper Synchronization and Bistability of Two Uniaxial Spin-Transfer
Oscillators with Field Coupling
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 6
\pages 697--712
\mathnet{http://mi.mathnet.ru/rcd1188}
\crossref{https://doi.org/10.1134/S1560354722060077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4519674}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1188
  • https://www.mathnet.ru/rus/rcd/v27/i6/p697
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:71
    Список литературы:31
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024