|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Alexey Borisov Memorial Volume
On the Topological Structure of Manifolds Supporting Axiom A Systems
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603005 Nizhny Novgorod, Russia
Аннотация:
Let $M^n$, $n\geqslant 3$, be a closed orientable $n$-manifold and $\mathbb{G}(M^n)$ the set of $\mathrm{A}$-diffeomorphisms $f: M^n\to M^n$ whose nonwandering set satisfies the following conditions:
$(1)$ each nontrivial basic set of the nonwandering set is either an orientable codimension one expanding attractor or an orientable codimension one contracting repeller;
$(2)$ the invariant manifolds of isolated saddle periodic points intersect transversally and codimension one separatrices of such points can intersect only one-dimensional separatrices of other isolated periodic orbits.
We prove that the ambient manifold $M^n$ is homeomorphic to either the sphere $\mathbb S^n$ or
the connected sum of $k_f \geqslant 0$ copies of the torus
$\mathbb T^n$, $\eta_f\geqslant 0$ copies of $\mathbb S^{n-1}\times \mathbb S^1$ and $l_f\geqslant 0$
simply connected manifolds $N^n_1, \dots, N^n_{l_f}$ which are not homeomorphic to the sphere.
Here $k_f\geqslant 0$ is the number of connected components of all nontrivial basic sets, $\eta_{f}=\frac{\kappa_f}{2} -k_f+\frac{\nu_f - \mu_f +2}{2},$
$ \kappa_f\geqslant 0$ is the number of bunches of all nontrivial basic sets, $\mu_f\geqslant 0$ is the number of sinks and sources, $\nu_f\geqslant 0$ is the number of isolated saddle periodic points with Morse index
$1$ or $n-1$, $0\leqslant l_f\leqslant \lambda_f$, $\lambda_f\geqslant 0$ is the number of all periodic points whose Morse index does not belong to the set $\{0,1,n-1,n\}$ of diffeomorphism $f$. Similar statements hold for gradient-like flows on $M^n$. In this case there are no
nontrivial basic sets in the nonwandering set of a flow. As an application, we get sufficient
conditions for the existence of heteroclinic intersections and periodic trajectories for Morse – Smale flows.
Ключевые слова:
Decomposition of manifolds, axiom A systems, Morse – Smale systems, heteroclinic
intersections.
Поступила в редакцию: 31.05.2022 Принята в печать: 22.10.2022
Образец цитирования:
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaotic Dyn., 27:6 (2022), 613–628
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1183 https://www.mathnet.ru/rus/rcd/v27/i6/p613
|
Статистика просмотров: |
Страница аннотации: | 82 | Список литературы: | 17 |
|