|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Alexey Borisov Memorial Volume
On Some Invariants of Birkhoff Billiards Under Conjugacy
Comlan E. Koudjinan, Vadim Kaloshin Institute of Science and Technology Austria (ISTA),
Am Campus 1, 3400 Klosterneuburg, Austria
Аннотация:
In the class of strictly convex smooth boundaries each of which has no strip around its boundary foliated by invariant curves, we prove that the Taylor coefficients of the “normalized” Mather's $\beta$-function
are invariant under $C^\infty$-conjugacies.
In contrast, we prove that any two elliptic billiard maps are $C^0$-conjugate near their respective boundaries, and $C^\infty$-conjugate, near the boundary and away from a line passing through the center of the underlying ellipse. We also prove that, if the billiard maps corresponding to two ellipses are topologically conjugate, then the two ellipses are similar.
Ключевые слова:
Birkhoff billiard, integrability, conjugacy, Mather’s $\beta$-function, Marvizi – Melrose
invariants.
Поступила в редакцию: 03.12.2021 Принята в печать: 08.09.2022
Образец цитирования:
Comlan E. Koudjinan, Vadim Kaloshin, “On Some Invariants of Birkhoff Billiards Under Conjugacy”, Regul. Chaotic Dyn., 27:5 (2022), 525–537
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1178 https://www.mathnet.ru/rus/rcd/v27/i5/p525
|
Статистика просмотров: |
Страница аннотации: | 65 | Список литературы: | 25 |
|