|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Alexey Borisov Memorial Volume
On the Linear Stability of a Vortex Pair Equilibrium
on a Riemann Surface of Genus Zero
Adriano Regis Rodriguesa, César Castilhob, Jair Koillerc a Departamento de Matemática, Universidade Federal Rural de Pernambuco,
52171-900 Recife PE, Brazil
b Departamento de Matemática, Universidade Federal de Pernambuco,
50740-540 Recife PE, Brazil
c Departamento de Matemática, Universidade Federal de Juiz de Fora,
36036-900 Juiz de Fora MG, Brazil
Аннотация:
We present a simple procedure to perform the linear stability analysis of a vortex pair equilibrium
on a genus zero surface with an arbitrary metric. It
consists of transferring the calculations to the round sphere in $\mathbb{R}^3$, with a conformal factor,
and exploring the Möbius invariance of the conformal structure, so that the equilibria, <i> seen on the representing sphere</i>, appear in the north/south poles. Three example problems are analyzed: $i)$ For a surface of revolution of genus zero, a vortex pair located at the poles is nonlinearly stable due to integrability.
We compute the two frequencies of the linearization. One is for the reduced system, the other is related to the
reconstruction. Exceptionally, one of them can vanish. The calculation requires only the local profile at the poles and one piece of global information (given by a quadrature). $ii)$ A vortex pair on a double faced elliptical region, limiting case of the triaxial ellipsoid when the smaller axis goes to zero. We compute the frequencies of the pair placed at the centers of the faces. $iii)$ The stability, to a restricted set
of perturbations, of a vortex equilateral triangle located in the equatorial plane of a spheroid, with polar vortices added so that the total vorticity vanishes.
Ключевые слова:
point vortices, symplectic geometry, Hamiltonian systems.
Поступила в редакцию: 31.10.2021 Принята в печать: 26.07.2022
Образец цитирования:
Adriano Regis Rodrigues, César Castilho, Jair Koiller, “On the Linear Stability of a Vortex Pair Equilibrium
on a Riemann Surface of Genus Zero”, Regul. Chaotic Dyn., 27:5 (2022), 493–524
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1177 https://www.mathnet.ru/rus/rcd/v27/i5/p493
|
Статистика просмотров: |
Страница аннотации: | 71 | Список литературы: | 26 |
|