Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2013, том 18, выпуск 4, страницы 356–371
DOI: https://doi.org/10.1134/S1560354713040035
(Mi rcd117)
 

Эта публикация цитируется в 27 научных статьях (всего в 27 статьях)

Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere

Alexey V. Borisovabc, Ivan S. Mamaevbca

a Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Institute of Computer Science; Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
c A. A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
Список литературы:
Аннотация: A new integrable system describing the rolling of a rigid body with a spherical cavity on a spherical base is considered. Previously the authors found the separation of variables for this system on the zero level set of a linear (in angular velocity) first integral, whereas in the general case it is not possible to separate the variables. In this paper we show that the foliation into invariant tori in this problem is equivalent to the corresponding foliation in the Clebsch integrable system in rigid body dynamics (for which no real separation of variables has been found either). In particular, a fixed point of focus type is possible for this system, which can serve as a topological obstacle to the real separation of variables.
Ключевые слова: integrable system, bifurcation diagram, conformally Hamiltonian system, bifurcation, Liouville foliation, critical periodic solution.
Поступила в редакцию: 16.11.2012
Принята в печать: 24.12.2012
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexey V. Borisov, Ivan S. Mamaev, “Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371
Цитирование в формате AMSBIB
\RBibitem{BorMam13}
\by Alexey V. Borisov, Ivan S. Mamaev
\paper Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 4
\pages 356--371
\mathnet{http://mi.mathnet.ru/rcd117}
\crossref{https://doi.org/10.1134/S1560354713040035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3090206}
\zmath{https://zbmath.org/?q=an:1334.37059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322878100003}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd117
  • https://www.mathnet.ru/rus/rcd/v18/i4/p356
  • Эта публикация цитируется в следующих 27 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:257
    Список литературы:65
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025