Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2022, том 27, выпуск 2, страницы 183–197
DOI: https://doi.org/10.1134/S1560354722020046
(Mi rcd1159)
 

Alexey Borisov Memorial Volume

On the Topology of the Atmosphere Advected by a Periodic Array of Axisymmetric Thin-cored Vortex Rings

Emad Masroora, Mark A. Stremlerb

a Engineering Mechanics Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, United States
b Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, United States
Список литературы:
Аннотация: The fluid motion produced by a spatially periodic array of identical, axisymmetric, thin-cored vortex rings is investigated. It is well known that such an array moves uniformly without change of shape or form in the direction of the central axis of symmetry, and is therefore an equilibrium solution of Euler's equations. In a frame of reference moving with the system of vortex rings, the motion of passive fluid particles is investigated as a function of the two nondimensional parameters that define this system: $\varepsilon = a/R$, the ratio of minor radius to major radius of the torus-shaped vortex rings, and $\lambda=L/R$, the separation of the vortex rings normalized by their radii. Two bifurcations in the streamline topology are found that depend significantly on $\varepsilon$ and $\lambda$; these bifurcations delineate three distinct shapes of the “atmosphere” of fluid particles that move together with the vortex ring for all time. Analogous to the case of an isolated vortex ring, the atmospheres can be “thin-bodied” or “thick-bodied”. Additionally, we find the occurrence of a “connected” system, in which the atmospheres of neighboring rings touch at an invariant circle of fluid particles that is stationary in a frame of reference moving with the vortex rings.
Ключевые слова: vortex rings, integrability, streamline topology, bifurcations.
Финансовая поддержка Номер гранта
National Science Foundation 1840995
This research was funded in part by the National Science Foundation’s Graduate Research Fellowship under Grant No. 1840995.
Поступила в редакцию: 11.12.2021
Принята в печать: 01.03.2022
Реферативные базы данных:
Тип публикации: Статья
MSC: 76B47
Язык публикации: английский
Образец цитирования: Emad Masroor, Mark A. Stremler, “On the Topology of the Atmosphere Advected by a Periodic Array of Axisymmetric Thin-cored Vortex Rings”, Regul. Chaotic Dyn., 27:2 (2022), 183–197
Цитирование в формате AMSBIB
\RBibitem{MasStr22}
\by Emad Masroor, Mark A. Stremler
\paper On the Topology of the Atmosphere Advected by a Periodic
Array of Axisymmetric Thin-cored Vortex Rings
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 2
\pages 183--197
\mathnet{http://mi.mathnet.ru/rcd1159}
\crossref{https://doi.org/10.1134/S1560354722020046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4404182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000781249200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127578644}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1159
  • https://www.mathnet.ru/rus/rcd/v27/i2/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:87
    Список литературы:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024