|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Alexey Borisov Memorial Volume
Geodesics in Jet Space
Alejandro Bravo-Doddoli, Richard Montgomery Dept. of Mathematics, UCSC,
1156 High Street, 95064 Santa Cruz, CA
Аннотация:
The space $J^k$ of $k$-jets of a real function of one real variable $x$ admits the structure of Carnot group type. As such, $J^k$ admits
a submetry (sub-Riemannian submersion) onto the Euclidean plane. Horizontal lifts of Euclidean lines (which
are the left translates of horizontal one-parameter subgroups) are thus globally minimizing geodesics on $J^k$.
All $J^k$-geodesics, minimizing or not, are constructed from degree $k$ polynomials in $x$ according to [7–9],
reviewed here.
The constant polynomials correspond to the horizontal lifts of lines. Which other polynomials yield globally minimizers and what
do these minimizers look like? We give a partial answer. Our methods include constructing
an intermediate three-dimensional “magnetic” sub-Riemannian space lying between the jet space and the plane, solving a Hamilton – Jacobi (eikonal) equations on this space, and analyzing period asymptotics associated to period degenerations arising from two-parameter families of these polynomials. Along the way, we conjecture the independence of the cut time of any geodesic on jet space from the starting location on that geodesic.
Ключевые слова:
Carnot group, Jet space, minimizing geodesic, integrable system, Goursat distribution,
sub-Riemannian geometry, Hamilton – Jacobi, period asymptotics.
Поступила в редакцию: 05.10.2021 Принята в печать: 01.02.2022
Образец цитирования:
Alejandro Bravo-Doddoli, Richard Montgomery, “Geodesics in Jet Space”, Regul. Chaotic Dyn., 27:2 (2022), 151–182
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1158 https://www.mathnet.ru/rus/rcd/v27/i2/p151
|
Статистика просмотров: |
Страница аннотации: | 104 | Список литературы: | 39 |
|