Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2022, том 27, выпуск 1, страницы 24–42
DOI: https://doi.org/10.1134/S1560354722010051
(Mi rcd1151)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

The Motion of an Unbalanced Circular Disk in the Field of a Point Source

Elizaveta M. Artemovaa, Evgeny V. Vetchaninb

a Ural Mathematical Center, Udmurt State University, ul. Universitetskaya 1, 426034 Izhevsk, Russia
b Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, 426069 Izhevsk, Russia
Список литературы:
Аннотация: Describing the phenomena of the surrounding world is an interesting task that has long attracted the attention of scientists. However, even in seemingly simple phenomena, complex dynamics can be revealed. In particular, leaves on the surface of various bodies of water exhibit complex behavior. This paper addresses an idealized description of the mentioned phenomenon. Namely, the problem of the plane-parallel motion of an unbalanced circular disk moving in a stream of simple structure created by a point source (sink) is considered. Note that using point sources, it is possible to approximately simulate the work of skimmers used for cleaning swimming pools. Equations of coupled motion of the unbalanced circular disk and the point source are derived. It is shown that in the case of a fixed-position source of constant intensity the equations of motion of the disk are Hamiltonian. In addition, in the case of a balanced circular disk the equations of motion are integrable. A bifurcation analysis of the integrable case is carried out. Using a scattering map, it is shown that the equations of motion of the unbalanced disk are nonintegrable. The nonintegrability found here can explain the complex motion of leaves in surface streams of bodies of water.
Ключевые слова: ideal fluid, motion in the presence of a source, nonintegrability, scattering map, chaotic scattering.
Финансовая поддержка Номер гранта
Министерство образования и науки Российской Федерации FEWS-2020-0009
Российский фонд фундаментальных исследований 18-29-10050-mk
The work of Elizaveta M. Artemova (Sections 2 and 4) was carried out within the framework of the state assignment of the Ministry of Education and Science of Russia (FEWS-2020-0009), and was supported in part by the Moebius Contest Foundation for Young Scientists. The work of Evgeny V. Vetchanin (Sections 1 and 3) is supported by the RFBR under grant 18-29-10050-mk.
Поступила в редакцию: 18.10.2021
Принята в печать: 27.12.2021
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Elizaveta M. Artemova, Evgeny V. Vetchanin, “The Motion of an Unbalanced Circular Disk in the Field of a Point Source”, Regul. Chaotic Dyn., 27:1 (2022), 24–42
Цитирование в формате AMSBIB
\RBibitem{ArtVet22}
\by Elizaveta M. Artemova, Evgeny V. Vetchanin
\paper The Motion of an Unbalanced Circular Disk
in the Field of a Point Source
\jour Regul. Chaotic Dyn.
\yr 2022
\vol 27
\issue 1
\pages 24--42
\mathnet{http://mi.mathnet.ru/rcd1151}
\crossref{https://doi.org/10.1134/S1560354722010051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4376697}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000751378200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124401099}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1151
  • https://www.mathnet.ru/rus/rcd/v27/i1/p24
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024