|
Эта публикация цитируется в 27 научных статьях (всего в 27 статьях)
The Euler–Jacobi–Lie Integrability Theorem
Valery V. Kozlov V. A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
This paper addresses a class of problems associated with the conditions for exact integrability of systems of ordinary differential equations expressed in terms of the properties of tensor invariants. The general theorem of integrability of the system of $n$ differential equations is proved, which admits $n-2$ independent symmetry fields and an invariant volume $n$-form (integral invariant). General results are applied to the study of steady motions of a continuum with infinite conductivity.
Ключевые слова:
symmetry field, integral invariant, nilpotent group, magnetic hydrodynamics.
Поступила в редакцию: 05.07.2012 Принята в печать: 30.08.2012
Образец цитирования:
Valery V. Kozlov, “The Euler–Jacobi–Lie Integrability Theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd115 https://www.mathnet.ru/rus/rcd/v18/i4/p329
|
Статистика просмотров: |
Страница аннотации: | 291 | Список литературы: | 63 |
|