|
Regular Papers
Exact Solutions to the Beltrami Equation with a Non-constant $\alpha (\mathbf{x})$
Oleg Bogoyavlenskij, Yuyang Peng Departrment of Mathematics and Statistics, Queen’s University,
Kingston, K7L 3N6 ON, Canada
Аннотация:
Infinite families of new exact solutions to the Beltrami equation with a non-constant
$\alpha (\mathbf{x})$ are derived. Differential operators connecting the steady axisymmetric Klein – Gordon
equation and a special case of the Grad – Shafranov equation are constructed. A Lie semi-group
of nonlinear transformations of the Grad – Shafranov equation is found.
Ключевые слова:
ideal fluid equilibria, force-free plasma equilibria, Klein – Gordon equation, Yukawa
potential, Beltrami equation.
Поступила в редакцию: 05.07.2021 Принята в печать: 31.08.2021
Образец цитирования:
Oleg Bogoyavlenskij, Yuyang Peng, “Exact Solutions to the Beltrami Equation with a Non-constant $\alpha (\mathbf{x})$”, Regul. Chaotic Dyn., 26:6 (2021), 692–699
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1139 https://www.mathnet.ru/rus/rcd/v26/i6/p692
|
|