|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Special Issue: 200th birthday of Hermann von Helmholtz
Something Old, Something New:
Three Point Vortices on the Plane
M. A. Stremler Department of Biomedical Engineering & Mechanics, Virginia Tech,
VA 24061 Blacksburg, USA
Аннотация:
The classic problem of three point vortex motion on the plane is revisited by using the interior angles of the vortex triangle, $\theta_{j}$, $j=1,2,3$, as the key system variables instead of the lengths of the triangle sides, $s_j$, as has been used classically.
Similar to the classic approach, the relative vortex motion can be represented in a phase space, with the topology of the level curves characterizing the motion. In contrast to the classic approach, the alternate formulation gives a compact, consistent phase space representation and facilitates comparisons of vortex motion in a co-moving frame.
This alternate formulation is used to explore the vortex behavior in the two canonical cases of equal vortex strength magnitudes, $\Gamma_{1} = \Gamma_{2} = \Gamma_{3}$ and $\Gamma_{1} = \Gamma_{2} = -\Gamma_{3}$.
Ключевые слова:
vortex dynamics, point vortices, three-vortex problem, potential flow.
Поступила в редакцию: 21.06.2021 Принята в печать: 18.08.2021
Образец цитирования:
M. A. Stremler
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1128
|
Статистика просмотров: |
Страница аннотации: | 94 | Список литературы: | 26 |
|